On the General Metriplectic Formalism for Describing Dissipation and its Computational Uses

Philip J. Morrison
Department of Physics
Institute for Fusion Studies, and ODEN Institute
The University of Texas at Austin
morrison@physics.utexas.edu
http://www.ph.utexas.edu/~morrison/
\section*{JETC2023 Salerno, Italy}
June 14, 2023

Collaborators: G. Flierl, M. Furukawa, C. Bressan, O. Maj, M. Kraus, E. Sonnendrücker, ...

Geometry of metriplectic 4-brackets: M. Updike
pjm \& M. Updike, arXiv:2306.06787v1 [math-ph] 11 Jun 2023.

Dynamics - Theories - Models

Goal:

Predict the future or explain the past \Rightarrow

$$
\dot{z}=V(z), \quad z \in \mathcal{Z}, \text { Phase Space }
$$

A dynamical system. Maps, ODEs, PDEs, etc.

Whence vector field V ?

- Fundamental parent theory (microscopic, N interacting gravitating or charged particles, BBGKY hierarchy, Vlasov-Maxwell system, ...). Identify small parameters, rigorous asymptotics \rightarrow Reduced Computable Model V.
- Phenomena based modeling using known properties, constraints, etc. used to intuit \rightarrow
Reduced Computable Model $V . \leftarrow$ structure can be useful.

Types of Vector Fields, $V(z)$

ODEs: 1-parameter group of trans. $t \rightarrow \pm \infty$. Reversible?

PDEs etc.: group or semigroup. diffusive $t \rightarrow \infty$. Irreversible?

Hamiltonian ODE or PDE: group $t \rightarrow \pm \infty$. Reversible?

Time Reversal Symmetry: canonical coords (q, p), equation same if $p \rightarrow-p$ and $t \rightarrow-t$. Example of discrete symmetry.

Not all Hamiltonian system have time reversal symmetry!

Conservative: Hamiltonian (autonomous), dissipative or non-dissipative, asymptotic stability?

Types of Vector Fields, $V(z)$ (cont)

Only (?) Natural Split:

$$
V(z)=V_{H}+V_{D}
$$

- Hamiltonian vector fields, V_{H} : conservative, properties, etc.
- Dissipative vector fields, V_{D} : not conservative of something, relaxation/asymptotic stability, etc.

General Hamiltonian Form:

$$
\text { finite } \operatorname{dim} \rightarrow \quad V_{H}=J \frac{\partial H}{\partial z} \quad \text { or } \quad V_{H}=\mathcal{J} \frac{\delta H}{\delta \psi} \quad \leftarrow \infty \operatorname{dim}
$$

where $J(z)$ is Poisson tensor/operator and H is the Hamiltonian. Basic product decomposition.

General Dissipation:

$$
V_{D}=? \ldots \quad \rightarrow \quad V_{D}=G \frac{\partial F}{\partial z}
$$

Why investigate? General properties of theory. Useful for computation.

Overview

I. Review Hamiltonian systems via noncanonical Poisson brackets
II. Review previous bracket formalisms for dissipation
III. Encompassing metriplectic 4-bracket theory

I. Noncanonical Hamiltonian Dynamics

Hamilton's Canonical Equations

Phase Space with Canonical Coordinates: (q, p)
Hamiltonian function: $H(q, p) \leftarrow$ the energy
Equations of Motion:

$$
\dot{p}_{i}=-\frac{\partial H}{\partial q^{i}}, \quad \dot{q}^{i}=\frac{\partial H}{\partial p_{i}}, \quad i=1,2, \ldots N
$$

Phase Space Coordinate Rewrite:

$$
z=(q, p), \quad \alpha, \beta=1,2, \ldots 2 N
$$

$$
\dot{z}^{\alpha}=J_{c}^{\alpha \beta} \frac{\partial H}{\partial z^{\beta}}=\left\{z^{\alpha}, H\right\}_{c}, \quad\left(J_{c}^{\alpha \beta}\right)=\left(\begin{array}{cc}
0_{N} & I_{N} \\
-I_{N} & 0_{N}
\end{array}\right)
$$

$J_{c}:=\underline{\text { Poisson tensor, Hamiltonian bivector, cosymplectic form }}$

Noncanonical Hamiltonian Structure

Sophus Lie (1890) \longrightarrow PJM \& Greene (1980, noncanonical) \longrightarrow A. Weinstein (1983, Poisson Manifolds etc.)

Noncanonical Coordinates:

$$
\dot{z}^{\alpha}=\left\{z^{\alpha}, H\right\}=J^{\alpha \beta}(z) \frac{\partial H}{\partial z^{\beta}}
$$

Noncanonical Poisson Bracket:

$$
\{A, B\}=\frac{\partial A}{\partial z^{\alpha}} J^{\alpha \beta}(z) \frac{\partial B}{\partial z^{\beta}}
$$

Poisson Bracket Properties:
antisymmetry $\longrightarrow \quad\{A, B\}=-\{B, A\}$
Jacobi identity $\longrightarrow\{A,\{B, C\}\}+\{B,\{C, A\}\}+\{C,\{A, B\}\}=0$
Leibniz $\quad \longrightarrow \quad\{A C, B\}=A\{C, B\}+\{C, B\} A$
G. Darboux: $\operatorname{det} J \neq 0 \Longrightarrow J \rightarrow J_{c}$ Canonical Coordinates

Sophus Lie: $\operatorname{det} J=0 \Longrightarrow$ Canonical Coordinates plus Casimirs (Lie's distinguished functions!)

Flow on Poisson Manifold

Definition. A Poisson manifold \mathcal{Z} is differentiable manifold with bracket

$$
\{,\}: C^{\infty}(\mathcal{Z}) \times C^{\infty}(\mathcal{Z}) \rightarrow C^{\infty}(\mathcal{Z})
$$

st $C^{\infty}(\mathcal{Z})$ with $\{$,$\} is a Lie algebra realization, i.e., is$
i) bilinear,
ii) antisymmetric,
iii) Jacobi, and
iv) Leibniz, i.e., acts as a derivation.

Flows are integral curves of noncanonical Hamiltonian vector fields, JdH.

Because of degeneracy, \exists functions C st $\{A, C\}=0$ for all $A \in C^{\infty}(\mathcal{Z})$. Called Casimir invariants (Lie's distinguished functions!).

Poisson Manifold (phase space) \mathcal{Z} Cartoon

Degeneracy in $J \Rightarrow$ Casimirs:

$$
\{A, C\}=0 \quad \forall A: \mathcal{Z} \rightarrow \mathbb{R}
$$

Lie-Darboux Foliation by Casimir (symplectic) leaves:

Lie-Poisson Brackets

Lie-Poisson brackets are special kind of noncanonical Poisson bracket that are associated with any Lie algebra, say \mathfrak{g}.

Natural phase space \mathfrak{g}^{*}. For $f, g \in C^{\infty}\left(\mathfrak{g}^{*}\right)$ and $z \in \mathfrak{g}^{*}$.

Lie-Poisson bracket has the form

$$
\begin{aligned}
\{f, g\} & =\langle z,[\nabla f, \nabla g]\rangle \\
& =\frac{\partial f}{\partial z^{i}} c^{i j}{ }_{k} z_{k} \frac{\partial g}{\partial z^{j}}, \quad \quad i, j, k=1,2, \ldots, \operatorname{dim} \mathfrak{g}
\end{aligned}
$$

Pairing $<,>: \mathfrak{g}^{*} \times \mathfrak{g} \rightarrow \mathbb{R}, z^{i}$ coordinates for \mathfrak{g}^{*}, and $c^{i j}{ }_{k}$ structure constants of \mathfrak{g}. Note $J^{i j}=c^{i j}{ }_{k} z_{k}$.

Classical Field Theory for Classical Purposes

Dynamics of matter described by

- Fluid models
- Euler's equations, Navier-Stokes, ...
- Magnetofluid models
- MHD, XMHD (Hall, electron mass physics), 2-fluid, ...
- Kinetic theories
- Vlasov-Maxwell, Landau-Lenard-Balescu, gyrokinetics, ...
- Fluid-Kinetic hybrids
- MHD + hot particle kinetics, gyrokinetics, ...

Applications:

atmospheres, oceans, fluidics, natural and laboratory plasmas

Hamiltonian and Dissipative structures are organizing principles

Noncanonical MHD (pjm \& Greene 1980)

Equations of Motion:

$$
\begin{aligned}
\text { Force } & \rho \frac{\partial \boldsymbol{v}}{\partial t} & =-\rho \boldsymbol{v} \cdot \nabla \boldsymbol{v}-\nabla p+\frac{1}{c} \boldsymbol{J} \times \boldsymbol{B} \\
\text { Density } & \frac{\partial \rho}{\partial t} & =-\nabla \cdot(\rho \boldsymbol{v}) \\
\text { Entropy } & \frac{\partial s}{\partial t} & =-\boldsymbol{v} \cdot \nabla s \\
\text { Ohm's Law } & \boldsymbol{E} & +\boldsymbol{v} \times \boldsymbol{B}=\eta \boldsymbol{J}=\eta \nabla \times \boldsymbol{B} \approx 0 \\
\text { Magnetic Field } & \frac{\partial \boldsymbol{B}}{\partial t} & =-\nabla \times \boldsymbol{E}=\nabla \times(\boldsymbol{v} \times \boldsymbol{B})
\end{aligned}
$$

Energy:

$$
H=\int_{D} d^{3} x\left(\frac{1}{2} \rho|\boldsymbol{v}|^{2}+\rho U(\rho, s)+\frac{1}{2}|\boldsymbol{B}|^{2}\right)
$$

Thermodynamics:

$$
\begin{equation*}
p=\rho^{2} \frac{\partial U}{\partial \rho} \quad T=\frac{\partial U}{\partial s} \quad \text { or } \quad p=\kappa \rho^{\gamma} \tag{or}
\end{equation*}
$$

Noncanonical Bracket:

$$
\begin{aligned}
&\{F, G\}=-\int_{D} d^{3} x({\left[\frac{\delta F}{\delta \rho} \nabla \frac{\delta G}{\delta \boldsymbol{v}}-\frac{\delta G}{\delta \rho} \nabla \frac{\delta F}{\delta \boldsymbol{v}}\right]+\left[\frac{\delta F}{\delta \boldsymbol{v}} \cdot\left(\frac{\nabla \times \boldsymbol{v}}{\rho} \times \frac{\delta F}{\delta \boldsymbol{v}}\right)\right] } \\
&+\frac{\nabla s}{\rho} \cdot\left[\frac{\delta F}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta G}{\delta s}-\frac{\delta G}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta F}{\delta s}\right] \\
&+\boldsymbol{B} \cdot {\left[\frac{1}{\rho} \frac{\delta F}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta G}{\delta \boldsymbol{B}}-\frac{1}{\rho} \frac{\delta G}{\delta \boldsymbol{v}} \cdot \nabla \frac{\delta F}{\delta \boldsymbol{B}}\right] } \\
&\left.+\boldsymbol{B} \cdot\left[\nabla\left(\frac{1}{\rho} \frac{\delta F}{\delta \boldsymbol{v}}\right) \cdot \frac{\delta G}{\delta \boldsymbol{B}}-\nabla\left(\frac{1}{\rho} \frac{\delta G}{\delta \boldsymbol{v}}\right) \cdot \frac{\delta F}{\delta \boldsymbol{B}}\right]\right)
\end{aligned}
$$

Dynamics:
$\frac{\partial \rho}{\partial t}=\{\rho, H\}, \quad \frac{\partial s}{\partial t}=\{s, H\}, \quad \frac{\partial \boldsymbol{v}}{\partial t}=\{\boldsymbol{v}, H\}, \quad$ and $\quad \frac{\partial \boldsymbol{B}}{\partial t}=\{\boldsymbol{B}, H\}$.
Densities:

$$
\boldsymbol{M}:=\rho \boldsymbol{v} \quad \sigma:=\rho s \quad \text { Lie }- \text { Poisson form }
$$

MHD Dynamics and Invariance

Dynamical (field) Variables:

$$
\Psi:=(\rho, \boldsymbol{v}, s, \boldsymbol{B})
$$

Poisson Bracket:

$$
\begin{aligned}
\{F, G\} & =\int_{D} d^{3} x \frac{\delta F}{\delta \Psi} \mathcal{J}(\Psi) \frac{\partial G}{\partial \Psi} \\
\frac{\partial \Psi}{\partial t} & =\{\Psi, H\}=\mathcal{J}(\Psi) \frac{\partial H}{\partial \Psi}
\end{aligned}
$$

Poisson Operator $\mathcal{J}(\Psi)$: matrix differential operator

Algebra of (Galilean) Invariance:
$P=\int_{D} d^{3} x \rho \boldsymbol{v}, \quad \boldsymbol{L}=\int_{D} d^{3} x \rho \boldsymbol{r} \times \boldsymbol{v}, \quad$ etc. $\quad \leftarrow 10$ parameters
Realization on functionals.

Casimir Invariants and the Kernel of \mathcal{J} :

Recall $\mathcal{J} \delta H / \delta \psi$, Casimirs determined by \mathcal{J} for any H.

Casimir Invariants:

$$
\{F, C\}^{M H D}=0 \quad \forall \text { functionals } F \text {. }
$$

Casimirs Invariant entropies:

$$
C_{S}=\int d^{3} x \rho f(s), \quad f \text { arbitrary }
$$

Casimirs Invariant helicities:

$$
C_{B}=\int d^{3} x \boldsymbol{B} \cdot \boldsymbol{A}, \quad C_{V}=\int d^{3} x \boldsymbol{B} \cdot \boldsymbol{v}
$$

Helicities have topological content, linking etc.

II. Some Bracket Dissipation Formalisms

Binary Brackets for Dissipation circa $1980 \rightarrow$

- Symmetric Bilinear Brackets (pjm 1980 -... unpublished, 1984 reduced MHD)
- Degenerate Antisymmetric Bracket (Kaufman and pjm 1982)
- Metriplectic Dynamics (pjm 1984,1984, 1986, ... ANK 1984)
- Generic (Grmela 1984, with Oettinger 1997, ...) \Leftrightarrow Metriplectic Dynamics! Binary but not Symmetric or Bilinear
- Double Brackets (Vallis, Carnevale; Brockett, Bloch ... 1989)

Brackets for Dissipation

Two ingredients: Binary or Bilinear Bracket + Generator

$$
\dot{z}=\{z, H\}+(z, F)
$$

where

$$
(,): C^{\infty}(\mathcal{Z}) \times C^{\infty}(\mathcal{Z}) \rightarrow C^{\infty}(\mathcal{Z})
$$

What is F and what are the algebraic properties of (,)?

K-M Brackets 1982

Done for plasma quasilinear theory.

Dynamics:

$$
\dot{z}=[z, H]_{S}
$$

Properties:

- bilinear
- antisymmetric, degenerate
- entropy production

$$
\dot{S}=[S, H]_{S} \geq 0 \quad \Rightarrow \quad z \mapsto z_{e q}
$$

Double Bracket 1989

Good Idea:
Vallis, Carnevale, and Young, Shepherd $(1989,1990)$

$$
\frac{d \mathcal{F}}{d t}=\{\mathcal{F}, H\}+((\mathcal{F}, H))=((\mathcal{F}, \mathcal{F})) \geq 0
$$

where

$$
((F, G))=\int d^{3} x \frac{\delta F}{\delta \chi} \mathcal{J}^{2} \frac{\delta G}{\delta \chi}
$$

Lyapunov function, \mathcal{F}, yields asymptotic stability to rearranged equilibrium.

- Maximizing energy at fixed Casimir: Works fine sometimes, but limited to circular vortex states

Simulated Annealing

Use various bracket dynamics to effect extremization.

Many relaxation methods exist: gradient descent, etc.

Simulated annealing: an artificial dynamics that solves a variational principle with constraints for equilibria states.

Coordinates (pjm \&Flierl 2011):

$$
\dot{z}^{i}=\left(\left(z^{i}, H\right)\right)=J^{i k} g_{k l} J^{j l} \frac{\partial H}{\partial z^{j}}
$$

symmetric, definite, and kernel of J.

$$
\dot{C}=0 \quad \text { with } \quad \dot{H} \leq 0
$$

Metriplectic Dynamics pjm 1984, 1986

A dynamical model of thermodynamics that 'captures':

- First Law: conservation of energy
- Second Law: entropy production
- Proposed as a general type of dynamical system in pjm 1984, 1986 and many examples satisfying axioms were given.
- Kaufman 1984 had all but degeneracy in (,).

Metriplectic Dynamics - Entropy, Degeneracies, and 1st and 2nd Laws

- Casimirs of noncanonical $\mathrm{PB}\{$,$\} are 'candidate' entropies.$ Election of particular $S \in\{$ Casimirs $\} \Rightarrow$ thermal equilibrium (relaxed) state.
- Generator: $F=H+S$
- 1st Law: identify energy with Hamiltonian, H, then

$$
\dot{H}=\{H, F\}+(H, F)=0+(H, H)+(H, S)=0
$$

Foliate \mathcal{Z} by level sets of H, with $(H, A)=0 \forall A \in C^{\infty}(\mathcal{Z})$.

- 2nd Law: entropy production

$$
\dot{S}=\{S, F\}+(S, F)=(S, S) \geq 0
$$

Lyapunov relaxation to the equilibrium state. Dynamics solves the equilibrium variational principle: $\delta F=\delta(H+S)=0$.

Geometical Definition

A metriplectic system consists of a smooth manifold \mathcal{Z}, two smooth vector bundle maps $J, G: T^{*} \mathcal{Z} \rightarrow T \mathcal{Z}$ covering the identity, and two functions $H, S \in C^{\infty}(\mathcal{Z})$, the Hamiltonian and the entropy of the system, such that
(i) $\quad\{f, g\}:=\langle\mathbf{d} f, J(\mathbf{d} g)\rangle$ is a Poisson bracket; $J^{*}=-J$;
(ii) $\quad(f, g):=\langle\mathbf{d} f, G(\mathbf{d} g)\rangle$ is a positive semidefinite symmetric bracket, i.e., (,) is \mathbb{R}-bilinear and symmetric, so $G^{*}=G$, and (f, f) ≥ 0 for every $F \in C^{\infty}(\mathcal{Z})$;
(iii) $\{S, f\}=0$ and $(H, f)=0$ for all $f \in C^{\infty}(\mathcal{Z})$ $\Longleftrightarrow J(\mathbf{d} S)=G(\mathbf{d} H)=0$.

Two examples of pjm 1984

Vlasov with Collisions

$$
\left.\frac{\partial f}{\partial t}=-v \cdot \nabla f-a \cdot \nabla_{v} f+\frac{\partial f}{\partial t}\right)_{c}
$$

where

$$
\text { Collision term } \left.\rightarrow \frac{\partial f}{\partial t}\right)_{c}
$$

could be, Landau, Lenard Balescu, etc.

Conserves, mass, momentum, energy,

$$
\frac{d H}{d t}=\frac{d}{d t} \int \frac{1}{2} m v^{2} f+\text { interaction }=0
$$

and makes entropy

$$
\frac{d S}{d t}=-\frac{d}{d t} \int f \ln (f) \geq 0
$$

Landau Collision Operator

Metriplectic bracket:

$$
\begin{gathered}
(A, B)=\int d z \int d z^{\prime}\left[\frac{\partial}{\partial v_{i}} \frac{\delta A}{\delta f(z)}-\frac{\partial}{\partial v_{i}^{\prime}} \frac{\delta A}{\delta f\left(z^{\prime}\right)}\right] T_{i j}\left(z, z^{\prime}\right) \\
\times\left[\frac{\partial}{\partial v_{j}} \frac{\delta B}{\delta f(z)}-\frac{\partial}{\partial v_{j}^{\prime}} \frac{\delta B}{\delta f\left(z^{\prime}\right)}\right] \\
T_{i j}\left(z, z^{\prime}\right)=w_{i j}\left(z, z^{\prime}\right) f(z) f\left(z^{\prime}\right) / 2
\end{gathered}
$$

Conservation and Lyapunov:
$w_{i j}\left(z, z^{\prime}\right)=w_{j i}\left(z, z^{\prime}\right) \quad w_{i j}\left(z, z^{\prime}\right)=w_{i j}\left(z^{\prime}, z\right) \quad g_{i} w_{i j}=0$ with $g_{i}=v_{i}-v_{i}^{\prime}$
Landau kernel:

$$
w_{i j}^{(L)}=\left(\delta_{i j}-g_{i} g_{j} / g^{2}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) / g
$$

Entropy:

$$
S[f]=\int d z f \ln (f)
$$

Ideal fluid with viscous heating and thermal conductivity.

$$
\begin{align*}
& \frac{\partial v_{i}}{\partial t}=\left\{v_{i}, \not \subset\right\} \tag{18}\\
& \frac{\partial \rho}{\partial t}=\{\rho, \not A\} \tag{19}\\
& \frac{\partial s}{\partial t}=\{s, \not \subset\} \tag{20}
\end{align*}
$$

where the GPB, \{,\}, is given by

$$
\begin{align*}
& \{F, G\}=-\int\left(\frac{\delta F}{\delta \rho} \vec{\nabla} \cdot \frac{\delta G}{\delta \vec{v}}+\frac{\delta F}{\delta \vec{v}} \cdot \vec{\nabla} \frac{\delta G}{\delta \rho}+\right. \\
& \left.\frac{\delta F}{\delta \vec{v}} \cdot\left[\frac{(\vec{\nabla} \times \vec{v})}{\rho} \times \frac{\delta G}{\delta \vec{v}}\right]+\frac{\vec{\nabla} s}{\rho} \cdot\left[\frac{\delta F}{\delta s} \frac{\delta G}{\delta \vec{v}}-\frac{\delta F}{\delta \vec{v}} \frac{\delta G}{\delta s}\right]\right) d^{3} x \tag{21}
\end{align*}
$$

Upon inserting the quantities shown on the right hand side of Eqs. (18)-(20), into Eq. (21) and performing the indicated operations one obtains, as noted, the invicid adiabatic limit of Eqs. (10)-(12).

The Casimirs for the bracket given by Eq. (21) are the total mass $M=\int \rho d^{3} x$ and a generalized entropy functional $\mathcal{S}_{f}=\int \rho f(s) d^{3} x$, where f is an arbitrary function of s. The latter quantity is added to the energy [Eq. (17)] to produce the generalized free energy of Eq. (4): $q=\psi+\mathcal{S}_{\mathrm{f}}$.

In order to obtain the dissipative terms, we introduce the following symmetric bracket:

$$
\begin{align*}
(F, G) & =\frac{1}{\lambda} \int\left\{\frac{1}{\rho} \frac{\delta F}{\delta v_{i}} \frac{\partial}{\partial x_{k}}\left[\frac{\sigma_{i k}}{\rho} \frac{\delta G}{\delta s}\right]+\frac{1}{\rho} \frac{\delta G}{\delta v_{i}} \frac{\partial}{\partial x_{k}}\left[\frac{\sigma_{i k}}{\rho} \frac{\delta F}{\delta s}\right]\right. \\
& +\frac{\sigma_{i k}}{T} \frac{\partial v_{i}}{\partial x_{k}}\left[\frac{1}{\rho^{2}} \frac{\delta F}{\delta s} \frac{\delta G}{\delta s}\right]+T^{2} k \frac{\partial}{\partial x_{k}}\left[\frac{1}{\rho T} \frac{\delta F}{\delta s}\right] \frac{\partial}{\partial x_{k}}\left[\frac{1}{\rho T} \frac{\delta G}{\delta s}\right] \\
& \left.+T \Lambda_{i k n n} \frac{\partial}{\partial x_{m}}\left[\frac{1}{\rho} \frac{\delta F}{\delta v_{n}}\right] \frac{\partial}{\partial x_{k}}\left[\frac{1}{\rho} \frac{\delta G}{\delta v_{i}}\right]\right\} \mathrm{d}^{3} \mathrm{x}, \tag{23}
\end{align*}
$$

III. Metriplectic 4-Brackets for Dissipation

The Metriplectic 4-Bracket

4-bracket on 0-forms (functions):

$$
(\cdot, \cdot ; \cdot, \cdot): \Lambda^{0}(\mathcal{Z}) \times \Lambda^{0}(\mathcal{Z}) \times \Lambda^{0}(\mathcal{Z}) \times \Lambda^{0}(\mathcal{Z}) \rightarrow \Lambda^{0}(\mathcal{Z})
$$

For functions f, k, g, and n

$$
(f, k ; g, n):=R(\boldsymbol{d} f, \boldsymbol{d} k, \boldsymbol{d} g, \boldsymbol{d} n)
$$

In a coordinate patch the metriplectic 4-bracket has the form:

$$
(f, k ; g, n)=R^{i j k l}(z) \frac{\partial f}{\partial z^{i}} \frac{\partial k}{\partial z^{j}} \frac{\partial g}{\partial z^{k}} \frac{\partial n}{\partial z^{l}} . \quad \leftarrow \text { quadravector? }
$$

- A blend of ideas: Two important functions H and S, symmetries, curvature idea, multilinear brackets all in pjm 1984, 1986.
- Manifolds with both Poisson tensor J and compatible metric, g or connection.

Metriplectic 4-Bracket Properties

(i) linearity in all arguments, e.g,

$$
(f+h, k ; g, n)=(h, k ; g, n)+(h, k ; g, n)
$$

(ii) algebraic identities/symmetries

$$
\begin{aligned}
& (f, k ; g, n)=-(k, f ; g, n) \\
& (f, k ; g, n)=-(f, k ; n, g) \\
& (f, k ; g, n)=(g, n ; f, k) \\
& (f, k ; g, n)+(f, g ; n, k)+(f, n ; k, g)=0 \quad \leftarrow \text { not needed }
\end{aligned}
$$

(iii) derivation in all arguments, e.g.,

$$
(f h, k ; g, n)=f(h, k ; g, n)+(f, k ; g, n) h
$$

which is manifest when written in coordinates. Here, as usual, $f h$ denotes pointwise multiplication. Symmetries of algebraic curvature. Although $R^{l}{ }_{i j k}$ or $R_{l i j k}$ but not $R^{l i j k}$. Metriplectic Minimum.

Reduction to Metriplectic 2-Bracket

Symmetric 2-bracket:

$$
(f, g)_{H}=(f, H ; g, H)=(g, f)_{H}
$$

Dissipative dynamics:

$$
\dot{z}=(z, S)_{H}
$$

Energy conservation:

$$
(f, H)_{H}=(H, f)_{H}=0 \quad \forall f
$$

Entropy dynamics:

$$
\dot{S}=(S, S)_{H}=(S, H ; S, H) \geq 0
$$

Metriplectic 4-brackets \rightarrow metriplectic 2-brackets of 1984, 1986!

Reduction to $\mathrm{K}-\mathrm{M}$

Kaufman \& pjm, Phys. Lett. A 88, 405 (1982).
K-M dynamics:

$$
\dot{z}^{i}=\left[z^{i}, H\right]_{S},
$$

K-M bracket emerges from any metriplectic 4-bracket:

$$
[f, g]_{S}:=(f, g ; S, H)
$$

Thus,

$$
[f, g]_{S}=-[g, f]_{S}
$$

and

$$
\dot{H}=[H, H]_{S}=(H, H ; S, H)=0,
$$

and

$$
\dot{S}=[S, H]_{S}=(S, H ; S, H) \geq 0
$$

Reduction to Double Brackets

Interchanging the role of H with a Casimir S :

$$
(f, g)_{S}=(f, S ; g, S)
$$

Can show with assumptions (Koszul construction)

$$
(C, g)_{S}=(C, S ; g, S)=0
$$

for any Casimir C. Therefore $\dot{C}=0$.

Reduction to not bilinear and nonsymmetric Generic

- Exists a procedure for linearizing and symmetrizing.

Easy Construction: K-N Product

Given σ and μ, two symmetric rank- 2 tensor fields operating on 1-forms $\boldsymbol{d} f, \boldsymbol{d} k$ and $\boldsymbol{d} g, \boldsymbol{d} n$, the Kulkarni-Nomizu (K-N) product is

$$
\begin{aligned}
\sigma ® \mu(\boldsymbol{d} f, \boldsymbol{d} k, \boldsymbol{d} g, \boldsymbol{d} n) & =\sigma(\boldsymbol{d} f, \boldsymbol{d} g) \mu(\boldsymbol{d} k, \boldsymbol{d} n) \\
& -\sigma(\boldsymbol{d} f, \boldsymbol{d} n) \mu(\boldsymbol{d} k, \boldsymbol{d} g) \\
& +\mu(\boldsymbol{d} f, \boldsymbol{d} g) \sigma(\boldsymbol{d} k, \boldsymbol{d} n) \\
& -\mu(\boldsymbol{d} f, \boldsymbol{d} n) \sigma(\boldsymbol{d} k, \boldsymbol{d} g)
\end{aligned}
$$

Metriplectic 4-bracket:

$$
(f, k ; g, n)=\sigma \boxtimes \mu(\boldsymbol{d} f, \boldsymbol{d} k, \boldsymbol{d} g, \boldsymbol{d} n)
$$

In coordinates:

$$
R^{i j k l}=\sigma^{i k} \mu^{j l}-\sigma^{i l} \mu^{j k}+\mu^{i k} \sigma^{j l}-\mu^{i l} \sigma^{j k}
$$

K-N Product \rightarrow Landau Collision Operator

Metriplectic 4-bracket on functionals:

$$
\begin{aligned}
(F, K ; G, N)= & \iint d^{6} z d^{6} z^{\prime} \mathcal{G}\left(z, z^{\prime}\right) \\
& \times(\Sigma \otimes M)\left(F_{f}, K_{f}, G_{f}, N_{f}\right)\left(z, z^{\prime}\right) \\
= & \int d^{6} z \int d^{6} z^{\prime} \mathcal{G}\left(z, z^{\prime}\right) \\
& \times(\delta \otimes \delta)^{i j k l} P\left[F_{f}\right]_{i} P\left[K_{f}\right]_{j} P\left[G_{f}\right]_{k} P\left[N_{f}\right]_{l},
\end{aligned}
$$

where

$$
F_{f}:=\frac{\delta F}{\delta f} \quad \text { and } \quad P[w]_{i}=\frac{\partial w(z)}{\partial v_{i}}-\frac{\partial w\left(z^{\prime}\right)}{\partial v_{i}^{\prime}}
$$

$(f, H ; g, H)=(f, g)_{H}$ becomes metriplectic 2-bracket (pjm 1984).
$(f, H ; S, H)=$ Landau collision operator!

Metriplectic 4-Bracket: Encompassing Definition of Dissipation

- Lots of geometry on Poisson manifolds with metric or connection.
- Entropy production and positive contravariant sectional curvature. For $\sigma, \eta \in \Lambda^{1}(\mathcal{Z})$, entropy production by

$$
K(\sigma, \eta):=(S, H ; S, H)
$$

where the second equality follows if $\sigma=\boldsymbol{d} S$ and $\eta=\boldsymbol{d} H$.

